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REPTATION MOTION OF ANIMALS IN A FLUID

UDC 534.222.2V. M. Shapovalov

The plane problem of reptation motion of a biological object in a viscous fluid is solved analytically
in a long-wave approximation. The motion if laminar. Computational expressions and asymptotic
estimates are obtained for the axial and shear forces, expended energy, and motion trajectory. Results
of a numerical analysis of the solution are given.
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A model for the eel-like swimming of water animals was proposed by academician Lavrent’ev [1], who was
the first to employ the method of plane cross sections to study this problem. The animal’s body was treated as a
rectangular plate capable of arbitrary bending and remaining cylindrical. The deformations of the plate that ensure
its motion in the fluid were found. Lavrent’ev’s ideas are further developed in [2, 3].

A theory for the motion of a rod in a viscous fluid flow is presented in [4–6]. The obtained dynamic equations
can be used to describe the motion of biological objects (BOs) in a continuous medium.

The problem of the plane reptation motion of animals in a viscous fluid is formulated and solved in a
long-wave approximation. The dynamic and kinematic characteristics of the motion are determined. Results of a
numerical analysis are given.

1. Formulation of the Problem. We estimate the inertia force for the motion of BOs. For objects of
small sizes, we adopt: d = 10−3 m, l ∼ 10−2 m, v = 10−3 m/sec, ρ = 103 kg/m3, and µ = 10−3 Pa · sec. In this case,
the Reynolds number is Re = vdρ/µ = 1 (µ and ρ are the viscosity and density of the fluid, d is the body diameter,
l is the body length, and v is the velocity). For large objects, d = 0.05 m, v = 1 m/sec, l ∼ 1 m, and Re = 5 · 104.
Consequently, laminar motion is characteristic of small-sized objects moving at a low velocity. Turbulent motion is
typical of large objects.

Along with overcoming the viscous friction forces, a moving animal needs to expend energy to overcome
the inertia of its own body. Let us estimate the inertia force that acts on the animal’s body. According to [7], for
Re Sh = ρd2/(Tµ) � 1 [Sh = d/(vT ) is the Strouchal number and T ∼ l/v is the characteristic time] the motion can
b e considered quasistationary and the inertia forces due to local acceleration can be ignored. We assume that the
average density of the BO body is close to the density of the ambient fluid (ρ = 103 kg/m3). We have ReSh = 0.1
for small-sized objects and ReSh = 2500 for large-sized objects. Therefore, the inertia forces of the BO body can
be ignored.

We limit our consideration to BOs that have a rather prolate body (small-sized fishes such as a water snake
in a drying pool, some insect larvae, spermatozoons, micro-organisms), so that the condition l � d is satisfied (l is
the body length in the prolate state). For directional displacement, the BO performs plane reptation motion, for
example, in the horizontal plane. In the case of vertebrate animals, the elastic axis passes along the backbone, which
can be treated as a hinged system of rods. We assume that the number of vertebras is infinite and the elastic axis
is a monotonic smooth curve. For invertebrate BOs, the elastic axis passes through the centers of cross sections.
During the motion, the an elastic axis and the acting forces lie in the plane xOy.

The central nervous system sends command signals to body muscles, so that a nearly sinusoidal traveling
wave is formed. The number of the command nerve impulses is finite and corresponds to the number of the working
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muscles, which are located uniformly over the entire length of the body. We assume that the number of the muscles
is infinite and that the command signal is a monotonic continuous function.

The Archimedean force is absent since the density of the BO is close to the density of the ambient fluid.
The cross section of the body is constant over the entire length of the BO. The fluid flow is laminar.

A fundamental feature that differs the motion of BOs in a fluid from the motion of a suspension of anisometric
particles is the distribution of mechanical energy. In the suspension, mechanical energy is supplied from the ambient
fluid to a particle, changing the particle configuration or position. In the case of BOs, the power source is the
“particle” by itself. If the ambient fluid is conditionally considered stationary, the dispersion of mechanical energy
(due to viscous dissipation) is localized in an area commensurable with the dimensions of the BO, i.e., in the region
hydrodynamic boundary layer.

We introduce a coordinate system (x, y, z) which is stationary in space (or frozen in the fluid). The coor-
dinates of the points on the elastic line of the BO are denoted by s x, y, and z. Vector parametrization of the
curve s is performed by the vector function r(s, t), 0 � s � l (t is time). The x, y, and z directions correspond to
a right-hand oriented trihedron (i, j, k). We denote the tangent vector to the elastic line by l (l = rs and |l| = 1),
the normal vector by n = b × l, and the binormal vector by b.

The equilibrium equations are written as

Fs = −K, Ms = F × l,

where M is the moment: F = (F · l)l+(F ·n)n = N l+Qn is the force, and K is the linear density of the external
forces. Here and below, the subscript denotes the corresponding derivatives.

For the motion of the BOs considered, the friction force is due to the difference between the velocity of the
BO (rt) and the fluid velocity (V ); therefore, the external friction force K is expressed as

K = Al((rt − V ) · l) + Bn((rt − V ) · n),

where V is the fluid velocity, A = 2πµ/ ln (0.952/
√

c ) is a coefficient that characterizes the longitudinal component
of the friction forces, c is the volume concentration of the BO in the fluid, B = 4πµ/ ln (7.4/ Re) is a coefficient that
characterizes the transverse component of the friction force, Re = 〈v〉ρd/µ is the Reynolds number, and 〈v〉 is the
characteristic velocity.

We have the following system of equations in scalar form:

Ns − Qϕs = −A(rt − V ) · l, Nϕs + Qs = −B(rt − V ) · n.

Performing scalar multiplications in the last equations using the relations rt − V = (xt − vx)i + (yt − vy)j,
l = i cosϕ + j sin ϕ, and n = −i sinϕ + j cosϕ, we obtain

Ns − Qϕs = −A[(xt − vx) cosϕ + (yt − vy) sin ϕ],

Nϕs + Qs = −B[−(xt − vx) sin ϕ + (yt − vy) cosϕ], Ms = −Q,
(1.1)

where N is the axial force, Q is the shear force, and M is the bending moment.
Accordingly, the “improved” equations [4, 5] (obtained by eliminating the functions x and y) for the problem

considered are written as

ϕt + B−1(Nϕs + Qs)s + A−1ϕs(Ns − Qϕs) =
∂vy

∂y
sin 2ϕ − ∂vx

∂y
sin2 ϕ +

∂vy

∂x
cos2 ϕ,

ϕsB
−1(Nϕs + Qs) − A−1(Ns − Qϕs)s = −0.5

(∂vx

∂y
+

∂vy

∂x

)
sin 2ϕ − ∂vx

∂x
cos 2ϕ.

(1.2)

Equations (1.1) and (1.2) need to be supplemented by the geometrical relations

xs = cosϕ, ys = sin ϕ, (1.3)

and the initial and boundary conditions

t = 0: x = x0(s), y = y0(s);

t > 0, s = 0: N = Q = 0; s = l: N = Q = 0.

(1.4)
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For convenience of the analysis, we resolve Eqs. (1.1) for the functions xt and yt:

xt = −A−1(Ns − Qϕs) cosϕ + B−1(Nϕs + Qs) sin ϕ + vx,

yt = −A−1(Ns − Qϕs) sin ϕ − B−1(Nϕs + Qs) cosϕ + vy.
(1.5)

We consider the case of a stationary fluid, i.e., V = 0 (vx = 0, vy = 0). Drag is ignored. In the problem
considered, the equation that links the moment to the bending angle via flexural rigidity has no physical meaning
(as well as the concept of an elastic rod) and is therefore not used.

2. Solution of the Problem. We convert to dimensionless parameters and variables using the largest
value of the shear force Q (Q0 = |maxQ|) as the force scale:

X =
x

l
, Y =

y

l
, S =

s

l
, e =

A

B
, n =

N

Q0
, q =

Q

Q0
,

τ =
Q0t

Al2
, Ω =

ωAl2

Q0
, K = kl, w =

AlW

Q2
0

.

(2.1)

Here ω is the oscillation frequency.
With allowance for (2.1), the constitutive equations (1.2)–(1.5) become

nϕs + qs = Z; (2.2)

ns − qϕs = D; (2.3)

ϕτ + eZs + ϕsD = 0; (2.4)

eϕsZ − Ds = 0; (2.5)

Xτ = −D cosϕ + eZ sin ϕ; (2.6)

Yτ = −D sinϕ − eZ cosϕ; (2.7)

Xs = cosϕ, Ys = sin ϕ; (2.8)

τ = 0: X = X0(S), Y = Y0(S); (2.9)

τ > 0, S = 0: n = q = 0; S = 1: n = q = 0. (2.10)

For brevity and convenience, we introduced two auxiliary functions D(S, τ) and Z(S, τ) defined by Eqs. (2.2)
and (2.3). The moment is not used in the solution; therefore, the last equation of (1.1) is omitted.

The nerve impulses transmitted to the body muscles form a traveling wave which ensures translational
motion. In Eqs. (2.2)–(2.10), the form of one of the functions n and q or ϕ needs to be specified a priori. We define
the plane traveling wave as

ϕ = ε sin (KS − Ωτ), (2.11)

where Ω is the dimensionless frequency and ε is the dimensionless parameter (|ε| � 1); K = 2πi (i = 1, 2, 3, . . . ).
According to the last equality, the length of the BO provides for an even number of half-waves. This significantly
simplifies the computational expressions.

We assume that the functions D and Z depend on ϕ. Thus, Eq. (2.4) can be written as

ϕτ + eZϕϕs + Dϕs = 0,

where Zϕ = ∂Z/∂ϕ. In view of expression. (2.11), the last equation becomes

−Ω + eKZϕ + KD = 0. (2.12)

Accordingly, Eq. (2.5) is written as

Dϕ = eZ. (2.13)
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Differentiating Eq. (2.13) with respect to ϕ and substituting the result into (2.12), we obtain the second-order
inhomogeneous linear differential equation

Dϕϕ + D = Ω/K.

Its solution has the form

D = C1 sinϕ + C2 cosϕ + Ω/K, (2.14)

where C1 and C2 are unknown functions of time.
Substitution of expression (2.14) into (2.13) yields the function Z:

Z = e−1(C1 cosϕ − C2 sin ϕ). (2.15)

From Eqs. (2.2) and (2.3), we find the functions n and q, which are also assumed to depend on ϕ. Using (2.14) and
(2.15), we have

n + qϕ = Zϕ−1
s ; (2.16)

nϕ − q = Dϕ−1
s . (2.17)

Differentiating both sides of Eq. (2.17) with respect to ϕ and adding the result to (2.16), we obtain the following
second-order inhomogeneous differential equation for the function n:

nϕϕ + n = Zϕ−1
s + (Dϕ−1

s )ϕ.

Its solution has the form

n = C3 sin ϕ + C4 cosϕ − cosϕ

∫
[Zϕ−1

s + (Dϕ−1
s )ϕ] sinϕdϕ

+ sin ϕ

∫
[Zϕ−1

s + (Dϕ−1
s )ϕ] cosϕdϕ

or, after integration by parts and simple transformations,

n = C3 sinϕ + C4 cosϕ − cosϕ
[ S∫

0

e−1(C1 cosϕ − C2 sin ϕ) sin ϕdS −
S∫

0

(C1 sinϕ + C2 cosϕ + Ω/K) cosϕdS
]

+ sin ϕ
[ S∫

0

e−1(C1 cosϕ − C2 sin ϕ) cosϕdS +

S∫

0

(C1 sinϕ + C2 cosϕ + Ω/K) sinϕdS
]
. (2.18)

Substitution of expression (2.18) into Eq. (2.17) yields the shear force:

q = C3 cosϕ − C4 sin ϕ

+ sin ϕ
[ S∫

0

e−1(C1 cosϕ − C2 sinϕ) sin ϕdS −
S∫

0

(C1 sin ϕ + C2 cosϕ + Ω/K) cosϕdS
]

+ cosϕ
[ S∫

0

e−1(C1 cosϕ − C2 sinϕ) cos ϕdS +

S∫

0

(C1 sin ϕ + C2 cosϕ + Ω/K) sinϕdS
]
. (2.19)

The unknowns coefficients C3 and C4 are found using the condition from (2.10): n = q = 0 for τ > 0 and
S = 0; for (2.18) and (2.19) it leads to the system of equations

C3 sin ϕ0 + C4 cosϕ0 = 0, C3 cosϕ0 − C4 sin ϕ0 = 0,

where ϕ0 = ϕ
∣∣∣
s=0

. The solution of this system has the form C3 = 0, C4 = 0.

The unknown coefficients C1 and C2 are found using the condition from (2.10): n = q = 0 for τ > 0 and
S = 1. In this case, expressions (2.18) and (2.19) lead to the system of equations
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− cosϕ0

[ 1∫

0

e−1(C1 cosϕ − C2 sin ϕ) sin ϕdS −
1∫

0

(C1 sinϕ + C2 cosϕ + Ω/K) cosϕdS
]

+ sinϕ0

[ 1∫

0

e−1(C1 cosϕ − C2 sinϕ) cos ϕdS +

1∫

0

(C1 sin ϕ + C2 cosϕ + Ω/K) sinϕdS
]

= 0,

sinϕ0

[ 1∫

0

e−1(C1 cosϕ − C2 sinϕ) sin ϕdS −
1∫

0

(C1 sin ϕ + C2 cosϕ + Ω/K) cosϕdS
]

+ cosϕ0

[ 1∫

0

e−1(C1 cosϕ − C2 sin ϕ) cosϕdS +

1∫

0

(C1 sinϕ + C2 cosϕ + Ω/K) sinϕdS
]

= 0.

Here we took into account the equality ϕ0 = ϕ
∣∣∣
s=0

= ϕ
∣∣∣
s=1

, which follows from the condition K = 2πi (i = 1, 2, . . .).
Simple transformations yield the system of equations

C1(e−1 − 1)

1∫

0

cosϕ sin ϕdS + C2

[
(1 − e−1)

1∫

0

sin2 ϕdS − 1
]

=
Ω
K

1∫

0

cosϕdS,

C1

[
e−1 + (1 − e−1)

1∫

0

sin2 ϕdS
]

+ C2(1 − e−1)

1∫

0

cosϕ sin ϕdS = − Ω
K

1∫

0

sin ϕdS.

Using the equalities

1∫

0

cosϕ sin ϕdS = 0,

1∫

0

sinϕdS = 0,

we obtain

C1 = 0, C2 =
Ω
K

1∫

0

cosϕdS
/[

(1 − e−1)

1∫

0

sin2 ϕdS − 1
]
.

In (2.11), setting |ε| � 1, expanding the integrands of the last expression in a series, and integrating, we
have

C2 =
Ω
K

1 − ε2/4 + ε4/64 + . . .

(1 − 1/e)(ε2/2 − ε4/8 + . . .) − 1
. (2.20)

Let us determine the trajectory of motion of the BO. With allowance for expressions (2.14), (2.15), and
(2.20), Eqs. (2.6) and (2.7) become

Xτ = −(Ω/K) cosϕ − C2, Yτ = −(Ω/K) sinϕ.

Integration yields

X = − Ω
K

τ∫

0

cosϕdτ − C2τ + X0(S), Y = − Ω
K

τ∫

0

sin ϕdτ + Y0(S), (2.21)

where X0(S) and Y0(S) are unknown functions.
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Integration of the geometrical relations (2.8) yields

X = C5(τ) +

S∫

0

cosϕdS, Y = C6(τ) +

S∫

0

sinϕdS. (2.22)

Any point on the elastic axis of the BO describes the same trajectory. The value S = 0 corresponds to the
trajectory of the head of the BO. Equating expressions (2.21) and (2.22) for S = 0, we obtain the equalities

X
∣∣∣
S=0

= − Ω
K

τ∫

0

cosϕ0 dτ − C2τ + X0

∣∣∣
S=0

= C5(τ),

Y
∣∣∣
S=0

= − Ω
K

τ∫

0

sin ϕ0 dτ + Y0

∣∣∣
S=0

= C6(τ).
(2.23)

The initial condition (2.9) reduces the first equality to the relation X = X0

∣∣∣
S=0

= C5(τ) = 0 for τ = 0. In addition,

comparing the expressions for X in (2.21) and (2.22) for τ = 0, we write the equality

X
∣∣∣
S=0

= X0

∣∣∣
S=0

=

S∫

0

cosϕ
∣∣∣
τ=0

dS.

Therefore, expression (2.21) for X becomes

X = − Ω
K

τ∫

0

cosϕdτ − C2τ +

S∫

0

cosϕ
∣∣∣
τ=0

dS. (2.24)

The second equality in (2.23) for the initial time gives the relation Y
∣∣∣
S=0,τ=0

= Y0

∣∣∣
S=0

= C6

∣∣∣
τ=0

. In

addition, the second expressions in (2.21) and (2.22) imply the equality

Y
∣∣∣
τ=0

= Y0(S) = C6

∣∣∣
τ=0

+

S∫

0

sinϕ
∣∣∣
τ=0

dS.

In view of the last relations, formula (2.21) for Y becomes

Y = Y0

∣∣∣
S=0

+

S∫

0

sin ϕ
∣∣∣
τ=0

dS − Ω
K

τ∫

0

sin ϕdτ. (2.25)

The constant Y0

∣∣∣
S=0

is found from the condition of symmetric deviation of the BO from the X axis:

1∫

0

Y
∣∣∣
τ=0

dS = 0.

We have

Y0

∣∣∣
S=0

= −
1∫

0

S∫

0

sin ϕ
∣∣∣
τ=0

ds ds.

Taking into account that ϕ
∣∣∣
τ=0

= ε sinKS, as a first approximation, we obtain Y0

∣∣∣
S=0

� −ε/K. The

expression for Y in (2.25) with accuracy to terms of order ε3, is written as

Y = −(ε/K) cos (KS − Ωτ) + O(ε3). (2.26)

Expanding the integrands in series and integrating (2.24), we obtain the following approximate expression
for the function X :
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X = (1 − e−1)
ε2Ωτ

2K
+ S

(
1 − ε2

4

)
+

ε2

8K
sin (2KS − 2Ωτ) + O(ε4). (2.27)

The mechanical energy of the body muscles finally becomes heat because of dissipation of mechanical energy
by the ambient fluid. Let us find the energy expended by the BO in motion.

According to the results of [4] the energy W expended by a particle to move in a viscous fluid is defined by
the integral

W =

l∫

0

(rt − V )K ds.

The relations of Sec. 1 imply the equalities rt − V = −B−1(Nϕs + Qs)n − A−1(Ns − Qϕs)l and K

= −[(Nϕs + Qs)n + (Ns − Qϕs)l]. Thus, the computational formula becomes

W =

l∫

0

[B−1(Nϕs + Qs)2 + A−1(Ns − Qϕs)2] ds.

Using (2.1)–(2.3), we write this expression in dimensionless form

w =

1∫

0

(eZ2 + D2) dS.

Taking into account (2.14), (2.15), and (2.20), we have

w = C2
2 (e−1 − 1)

1∫

0

sin2 ϕdS + C2
2 +

Ω2

K2
+ 2C2

Ω
K

1∫

0

cosϕdS. (2.28)

Integrating the first terms of the expansion of the integrands, we obtain the asymptotic estimate

w = Ω2ε2/(2eK2) + O(ε4).

Using relations (2.1) for A = 2πµ/ ln (0.952/
√

c ) and ym/l = ε/K, we write the computational formula for the
energy in dimensional form

W = 2πµlω2y2
m/ ln (7.4/ Re) + O(ε4), (2.29)

where ym is the maximum deviation of the elastic axis from the x axis.
With allowance for the results (2.20), the expression for the dimensionless axial load (2.18) becomes

n = C2

{
cosϕ

[
(e−1 − 1)

S∫

0

sin2 ϕdS + S
]

+
1
2

(1 − e−1) sin ϕ

S∫

0

sin 2ϕdS
}

+
Ω
K

[
sin ϕ

S∫

0

sin ϕdS + cosϕ

S∫

0

cosϕdS
]
. (2.30)

Accordingly, formula (2.19) can be written as

q = C2

{1
2

cosϕ (1 − e−1)

S∫

0

sin 2ϕdS − sin ϕ
[
(e−1 − 1)

S∫

0

sin2 ϕdS + S
]}

+
Ω
K

[
cosϕ

S∫

0

sin ϕdS − sin ϕ

S∫

0

cosϕdS
]
. (2.31)

Formulas (2.30) and (2.31) are not suitable for analysis; therefore, using expansions of trigonometric func-
tions, we write the following asymptotic estimates for the functions n and q:
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n = (Ωε2/(4K2)){(1/e − 1/2)[sin (2KS − 2Ωτ) + sin 2Ωτ ]

− (4/e) sin (KS − Ωτ)[cos (KS − Ωτ) − cosΩτ ]} + O(ε4); (2.32)

q = −(Ωε/(K2e))[cos (KS − Ωτ) + cosΩτ ] + O(ε3). (2.33)

Thus, an exact analytical solution of the problem is obtained. The main parameters of the motion of the
BO are determined: the axial force is described by expression (2.29) and is estimated asymptotically by (2.32);
the shear force is described by expression (2.30) and is estimated asymptotically by (2.33); the expended energy is
described by (2.28) and (2.29); the motion trajectory is expressed in parametric form by the accurate relations (2.24)
and (2.25) and by approximate relations (2.26) and (2.27). To determine the element, one can use the last equation
in (1.1) Ms = −Q.

3. Analysis of the Solution. In (2.27), the coefficient at τ in the first term (1−e−1)ε2Ω/(2K) characterizes
the average dimensionless velocity of translational motion of the BO along the X axis. With allowance for (2.1),
this velocity can be written in dimensional form y2

mkω, where ym = ε/k is the oscillation frequency [see (2.26)].
Therefore, the velocity of translational motion of the BO is proportional to the squared oscillation frequency, the
tortuosity of the body k, and the frequency of muscle contraction ω of the BO.

According to expression (2.32), the axial load exerted on the backbone has a cyclic nature. The amplitude
of the load N/Q0 � ωAy2

m/Q0 is proportional to the frequency of muscle contraction ω, the squared deviation y2
m,

and the axial friction force A. The drag force is ignored.
The shear force (2.33) exerted on the intervertebral disks also has a cyclic nature. The amplitude of the

force Q/Q0 � ωBym/(Q0k) is proportional to the frequency of muscle contraction ω, the deviation ym, and the
shear friction force B and is inversely proportional to the bending frequency of the body k.

According to expression (2.29), the energy expended in motion W is proportional to the body length l, the
squared frequency of muscle contraction ω2, and the squared deviation y2

m.
Figure 1 shows the configurations of the elastic axis of the BO at various times. The calculations were

performed using formulas (2.26) and (2.27) for the following conditions: ε = 0.5, Ω = 2π, K = 2π, and e = 2/3.
The step in time τ is 2.2. Curve 1 corresponds to the time τ = 0 and curve 6 to τ = 2.2 · 5 = 11. The object moves
to the left along the X axis. The arrow shows the motion direction.

A numerical analysis of (2.26) and (2.27) shows that to ensure the correct direction of motion (agreement
between the motion of the body and the direction of its motion along the X axis) the condition e < 1 should be
satisfied. The parameter e characterizes the ratio of the longitudinal and transverse friction forces and is defined
by the formula

e = ln (7.4/ Re)/(2 ln (0.952/
√

c )).
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Therefore, the Reynolds number should be in the range 8.167c < Re < 7.4. The obtained mathematical model is
adequate for describing the motion of small-sized BOs at a low velocity.

It should be noted that the body surface of some BOs releases a secretion that imparts non-Newtonian
properties to the hydrodynamic boundary layer. The longitudinal friction is lowered because the parameter e

decreases. In this case, determining the parameter e exactly is rather problematic.
According to (2.26), the parameters ε characterizes the dimensionless amplitude (span) of oscillations of

BOs. According to (2.27), the velocity of the axial motion is proportional to the squared span of the oscillations ε2.
The parameter K characterizes the tortuosity of a BO, namely, the number of half-waves of the bent body. Thus,
the body has two half-waves for K = 2π, four half-waves for K = 4π, etc. A BO moving without friction in a glass
tube of the sinusoidal shape Y = ε sinKS would have the maximum possible velocity equal to the velocity of the
traveling wave Ω/K [3]. However, since BOs have to overcome viscous friction forces, they has lower velocities, i.e.,
lag behind the indicated traveling wave (see Fig. 1). Therefore, the parameters ε and e should satisfy the condition
0.5(e−1 − 1)ε2 � 1.

The function ϕ [see expression (2.11)], which is the argument of trigonometric functions, should satisfy the
condition ϕ < π/2, which implies the relation ε < π/2. The violation of the last condition leads to a distortion of
the shape of the elastic axis by high-frequency harmonics.

The law of motion of the BO was specified a priori. It is possible that the governing equation (2.11) is
not optimal, i.e., it does not ensures the minimum energy consumption in motion. This issue, however, requires a
separate consideration.

As can be seen from Fig. 1, the orientation of the head of the BO changes periodically, which is due to by
the adopted form of the governing equations (2.11). Some BOs retain the axial (along the X axis) orientation of
the head during motion. In this case, it is necessary to adopt a different governing equation, which should satisfy
the boundary condition t > 0, s = 0, ϕ = 0. In addition, adding an auxiliary term (a constant or a function of
time) to the right side of Eqs. (2.11), it is possible to change the direction of motion of the BO: to the right, to the
left, on a circle, on a spiral, etc.
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